Development of the Security
Framework based on

OWASP ESAPI for JSF2.0

14 May 2013



ESAPI on JSF 2.0 Matthey Samuel

1 I a0 o [0 T {0 o PO 3

2. File based authorization MOAUIE ... ssssas 3

P2t I o (=TT =T 01 7= | (] o T 3

3. ENNANCE thE SECUNTY ..ot ssess s sssssess s sessssessaseees 4

3.1 FACESErvIet CONIIOIIET ... bbb ssaes 4

G T2 N 1 2= Lo Q=TT o = [0 TP 5

3.3 Protect this attacCkK ... s ssassaes 5

ET= T 0| o @ S 3 I 1= PP 6

WWED XMt bbb bbb bbb bbb 7

3.4 Try to achieve the attack (with Webscarab) .........ceeeneenneesnseessseesneens 7

3.4.1 INSLAIAION ... bbb s 8

3.4.2 Webscarab configuration.........eesessssssssssssesssesssessssessnns 8

G TG TN = = T ([ YT 8

Z O =71 o] [[oTe | =T o] 0|V PPN 9
BFH 14.05.13



ESAPI on JSF 2.0 Matthey Samuel

1. Introduction

This project is a continuation of the bachelor thesis (Master Thesis - Applied
Computer Science Albert-Ludwigs-Universitat Freiburg im Breisgau - "Development
of the Security Framework based on OWASP ESAPI for JSF2.0" by Rakeshkumar
Kachhadiya) created in May 2012. The goal is to improve more security on the ‘File
based authorization’ module.

2. File based authorization module

This module gives permissions to a specific user to visualize some areas or pages
on the presentation layer.

It's responsible to maintain the user information in the file with their assigned roles
but also setting the rendering components false if the accessible user tries to retrieve
the page.

2.1 Presentation

We have at the left of the Figure 2.1, the ‘USF Framework’, it is represented by a
cycle which is composed of six steps. A request is initiated by the ‘Restore view’ step
and completed generally as response by the ‘Render Response’ step.

We note that the ‘File Based Authorization’ module interacts with the fourth stage
‘Update model values’ of the JSF cycle.

At this step, the component tree that makes up the page is already created! The
responsible step that creates the three is the ‘Restore view’ step. This tree is stored
in a FacesContext object type and will be used throughout the processing of the
request.

BFH 14.05.13



ESAPI on JSF 2.0

Request

Matthey Samuel

ESAPI

[ Restore view H ARply request
value

Process
validations

JSF Framework

Update model

JSF-ESAPI Framework

[ Validation ]
[ Filtering ]

\

values

Invoke application

Render Response

Figure 2.1 File Based Authorization Module {1}

3. Enhance the security

File Based
Authorization

R A

Render Response

The aim is to achieve this ‘File based authorization’ before the tree is created.

To achieve this, two solutions are possible. The first is to create a * JSF validator’ that
will be executed by the ‘Restore view’ step, before the creation of the tree. The
second solution is to create a Servlet Filter.

3.1 FaceServlet controller

The FaceServlet controller treats the request before entering into the JSF Lifecycle.

BFH

14.05.13



ESAPI on JSF 2.0 Matthey Samuel

FacesServlet

2. Passes control to lifecycle 1. Create FacesContext

( LifeCycle \q FacesContext

\\ 3. Process FacesContext in 6 phases

Figure 1.2 FacesServlet

FacesServlet creates a FacesContext object, which contains the ServletContext,
ServletRequest, and the ServletResponse Object. The web container passes that to
a service method. Then, the FacesServlet hands over control to the LifeCylce Object
and process the FacesContext!

This solution filter all ‘.xhtml’ file for example and if the user is not logged or not
authorized to view the content of the page or a complete page, he’s redirect to an
error!

3.2 Attack scenario

When the request enters in the JSF cycle, the tree of all components is created!
When this request is completed by the ‘Render Response’ phase, the component
tree is now rendered as HTML!

At this moment, an attacker can easily know the different node ID’s available in the
source code of the page. He can now generated a POST request with this ID that
allow to manually access this page or a area of the page, yet, it is not allowed to view
this content!

3.3 Protect this attack

To secure this attack, we create a recursive function that creates a blacklist
containing all ID’s from every node of the tree. This list will then be inserted into the
session!

/I function to add all node id's in a blacklist

BFH 14.05.13



ESAPI on JSF 2.0

Matthey Samuel

protected static void disableRec(UIComponent c,List<String> blackList}{

System.out.printin("disable"+c.getClientld());
blackList.add(c.getClientld());
children = c.getChildren();

for(UIComponent child : children){
disableRec(child,blackList);
}

When the attacker generates the POST request, we verify that the ID entered in this
request is on the blacklist or not. If the ID is available on the blacklist (that means
that he certainly try to modify the tree node), the POST request should not be

executed and an error will be generated.

A servlet filter needs to be implemented, which will be executed before the tree was
rendered! This filter simply retrieves the blacklist stored in the session and starts the

verification.

EsapiPOSTFilter

public class EsapiPOSTFilter implements Filter {

private FilterConfig fc;
List<UIComponent> children;

@Override

public void init(FilterConfig filterConfig) throws ServletException {
/l Auto-generated method stub
this.fc = filterConfig;

}

@Override

public void destroy() {
/l Auto-generated method stub
this.fc = null;

}

@Override

public void doFilter(ServletRequest request, ServletResponse response,
FilterChain filterChain) throws IOException, ServletException {

/l Auto-generated method stub

HttpServletRequest req = (HttpServletRequest)request;
HttpServletResponse res = (HttpServletResponse)response;

/| Get blacklist in session
List<String> blackList = (List<String>)
req.getSession().getAttribute("blackList");

BFH 14.05.13



ESAPI on JSF 2.0 Matthey Samuel

/lprint the blacklist id different as null
if(blackList != null){
for(String black : blackList){
System.out.print(black+", ");
}

}

if(blackList==null{
blackList = new LinkedList<String>();
}

Enumeration<String> enumParam = req.getParameterNames();
while(enumParam.hasMoreElements()){

String id = enumParam.nextElement();

/' if the ID is in the blacklist send error
if ( blackList.contains(id) ) {

res.sendError(javax.servlet.http.HttpServletResponse.SC_UNAUTHORIZED);
return;
}

}

/I clear the blacklist

blackList.clear();

reqg.setAttribute("blackList", blackList);
filterChain.doFilter(req, res);

}

This blacklist should be emptied once the filtering of the POST request is completed.

Web.xml

To activate the filter in this project, we need to add this part of code in the ‘web.xml’
file available in the ‘Web-INF’ folder.

<filter>
<filter-name>POSTFilter</filter-name>
<filter-class>ch.security4dweb.esapi.authentication.EsapiPOSTFilter</filter-class>
<[filter>

<filter-mapping>
<filter-name>POSTFilter</filter-name> <url-pattern>*.xhtmi</url-pattern>
</filter-mapping>

3.4 Try to achieve the attack (with Webscarab)

BFH 14.05.13



ESAPI on JSF 2.0 Matthey Samuel

3.4.1 Installation

First, install the Webscarab java application in OWASP web site:

https://www.owasp.org/index.php/Category:OWASP WebScarab Project

3.4.2 Webscarab configuration

Webscarab is used to intercepts POST requests, and also used to modify the
request.

We need to configure it by clicking in the ‘intercept request’ in the Proxy tab. See
Figure 3.4.2

| Summary = Messages m Manual Request ~ Spider

Intercept requests : @] Case Sensitive Regular Expressions ? |_|
Methods Include Paths matching :
POST Exclude paths matching :

Figure 3.4.2

3.4.3 Practice

Consider a simple login with username and passwords ‘Figure 3.4.3’, two types of
users are available: administrators and users who each have access to certain
areas.

JSF2.0 ESAPI Authorization

Enter Username :

Enter Password :

Submit

Figure 2.4.3

Administrators have access to the general and admin panels. The users only have
access to the general and user panels.

An input field has been added in the admin and user zone. And finally a submit
button.

We need to log in with user or admin account, in this case it is an admin account and
we need to add a value (tryToHack) in the input field ‘Figure 3.4.3.2°

JSF2.0 ESAPI Authorization Result

Admin Panel
UserName : admin

Password : Test1234

Role :

Test : tryToHack

End
General Panel

UserName : admin
Password : Test1234
Role :

End Submit

Figure 3.4.3.2

BFH 14.05.13



ESAPI on JSF 2.0 Matthey Samuel

By clicking on the ‘submit’ button, Webscarab intercepts the request (Figure 3.4.3.3)
and we note that the id of the input which we inserted the “tryToHack” value is
“j_id_5%3Atest”. We will replace this id, with the id of the input of the user panel.

e 00 Edit Request

Intercept requests : [ Intercept responses : | |

[ Parsed T

POST http://localhost:8080/esapi_project/faces/authorization_result.xhtml HTTP/1.1

Host: localhost:8080

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8; rv:12.0) Gecko/20100101 Firefox/12.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;,q=0.8

Accept-Language: fr,fr-fr;q=0.8,en-us;q=0.5,en;q=0.3

Accept-Encoding: gzip, deflate

Proxy-Connection: keep-alive

Referer: http://localhost:8080/esapi_project/faces/authorization_test.xhtml

Cookie: JSESSIONID=B98DB4A25195618804A3A53A24A8B487; oam.Flash.RENDERMAP.TOKEN =-hec4iaoo6
Content-Type: application/x-www-form-urlencoded

Content-length: 398

=> j_id_5%3Atest=tryToHack&j_id_5%3Aj_id_1h=c216091658667b8dd5ae0f016c1d382e0008e2ef408fa56972f8dd6af0adbbb2953591b4964f9f8f3b57910c4
2858554d425cca53a763326c816177b102051e9&j_id_5%3Aj_id_1j=Submit&j_id_5_SUBMIT=1&javax.faces.ViewState=kW49M1ATjOtYx4w3AB42zTVnKsf3
UQEIvd38XZmMnLgNe%2FYDITvO77FKKfHT7hrl2ekqL6INUGWI77HqvbDhr#%2F4wKc979qBV3xpp12ewENg6CVbJwA%2FXeqdvd T%2FL25SURKONG7EF7ZobpVt
aXell6hiyuNak%3D

Accept changes Cancel changes | | Abort request | Cancel ALL intercepts |

Figure 3.4.3.2

Modify the request and enter the input id (test2) of the user panel and send the
request.

j_id_5%3Atest2=tryToHack&j_id_5%3Aj_id_1h=c216091658667b8dd5ae0f016c1d382e0008e2ef408fa56972f8dd6af0adbbb2953591b4964f9f8f3b57910c

The application has detected the id ‘test2’ in the blacklist and the filter redirects you
to an error page!

4. Bibliography

- Master Thesis - Applied Computer Science Albert-Ludwigs-Universitat
Freiburg im Breisgau - “Development of the Security Framework based
on OWASP ESAPI for JSF2.0” by Rakeshkumar Kachhadiya 2 May 2012,

{1}

- https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

BFH 14.05.13



